Treatment of Philadelphia Chromosome-negative Myeloproliferative Neoplasms in 2024: A Concise Review
DOI:
https://doi.org/10.58931/cht.2024.3357Abstract
In 1951, William Dameshek coined the term myeloproliferative disorders (MPDs) for diseases characterized by abnormal proliferation of one or more terminally differentiated myeloid cell lines in the peripheral blood.1,2 In 2008, the World Health Organization (WHO) renamed these disorders as myeloproliferative neoplasms (MPNs) in recognition of their clonal nature. There are currently two classification system for MPNs: WHO and International Consensus Classification (ICC), 2022.3,4 This review will focus on the Philadelphia chromosome-negative MPNs, which include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF).
References
Tefferi A. The history of myeloproliferative disorders: before and after Dameshek. Leukemia. 2008 Jan;22(1):3–13. DOI: https://doi.org/10.1038/sj.leu.2404946
DAMESHEK W. Editorial: Some Speculations on the Myeloproliferative Syndromes. Blood. 1951 Apr 1;6(4):372–5. DOI: https://doi.org/10.1182/blood.V6.4.372.372
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022 Jul;36(7):1703–19. DOI: https://doi.org/10.1038/s41375-022-01613-1
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022 Sep 15;140(11):1200–28.
Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet Lond Engl. 2005 Mar 19;365(9464):1054–61. DOI: https://doi.org/10.1016/S0140-6736(05)74230-6
Mejía-Ochoa M, Acevedo Toro PA, Cardona-Arias JA. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations: 2000-2018. BMC Cancer. 2019 Jun 17;19(1):590. DOI: https://doi.org/10.1186/s12885-019-5764-4
Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007 Feb 1;356(5):459–68. DOI: https://doi.org/10.1056/NEJMoa065202
Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood. 2006 Mar 1;107(5):1864–71. DOI: https://doi.org/10.1182/blood-2005-06-2600
Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. N Engl J Med. 2013 Dec 19;369(25):2379–90. DOI: https://doi.org/10.1056/NEJMoa1311347
Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2. N Engl J Med. 2013 Dec 19;369(25):2391–405.
How J, Hobbs GS, Mullally A. Mutant calreticulin in myeloproliferative neoplasms. Blood. 2019 Dec 19;134(25):2242–8. DOI: https://doi.org/10.1182/blood.2019000622
Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014 Apr 3;123(14):2220–8. DOI: https://doi.org/10.1182/blood-2013-11-537167
Barbui T, Finazzi G, Falanga A. Myeloproliferative neoplasms and thrombosis. Blood. 2013 Sep 26;122(13):2176–84. DOI: https://doi.org/10.1182/blood-2013-03-460154
Campbell PJ, Scott LM, Buck G, Wheatley K, East CL, Marsden JT, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. The Lancet. 2005 Dec 3;366(9501):1945–53. DOI: https://doi.org/10.1016/S0140-6736(05)67785-9
Borowczyk M, Wojtaszewska M, Lewandowski K, Gil L, Lewandowska M, Lehmann-Kopydłowska A, et al. The JAK2 V617F mutational status and allele burden may be related with the risk of venous thromboembolic events in patients with Philadelphia-negative myeloproliferative neoplasms. Thromb Res. 2015 Feb;135(2):272–80. DOI: https://doi.org/10.1016/j.thromres.2014.11.006
Landolfi R, Marchioli R, Kutti J, Gisslinger H, Tognoni G, Patrono C, et al. Efficacy and Safety of Low-Dose Aspirin in Polycythemia Vera. N Engl J Med. 2004 Jan 8;350(2):114–24. DOI: https://doi.org/10.1056/NEJMoa035572
Barbui T, Passamonti F, Accorsi P, Pane F, Vannucchi AM, Velati C, et al. Evidence- and consensus-based recommendations for phlebotomy in polycythemia vera. Leukemia. 2018 Sep;32(9):2077–81. DOI: https://doi.org/10.1038/s41375-018-0199-5
Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular Events and Intensity of Treatment in Polycythemia Vera. N Engl J Med. 2013 Jan 3;368(1):22–33. DOI: https://doi.org/10.1056/NEJMoa1208500
Tefferi A, Barbui T. Polycythemia vera: 2024 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(9):1465–87. DOI: https://doi.org/10.1002/ajh.27002
Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA, et al. Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015 Oct 8;126(15):1762–9. DOI: https://doi.org/10.1182/blood-2015-04-637280
Mascarenhas J, Kosiorek HE, Prchal JT, Rambaldi A, Berenzon D, Yacoub A, et al. A randomized phase 3 trial of interferon-α vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022 May 12;139(19):2931–41. DOI: https://doi.org/10.1182/blood.2021012743
Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020 Mar 1;7(3):e196–208. DOI: https://doi.org/10.2139/ssrn.3426089
Kiladjian JJ, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Long-term outcomes of polycythemia vera patients treated with ropeginterferon Alfa-2b. Leukemia. 2022 May;36(5):1408–11. DOI: https://doi.org/10.1038/s41375-022-01528-x
Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Event-free survival in patients with polycythemia vera treated with ropeginterferon alfa-2b versus best available treatment. Leukemia. 2023 Oct;37(10):2129–32. DOI: https://doi.org/10.1038/s41375-023-02008-6
Mascarenhas J, Tashi T, El Chaer F, Priego V, Zagrijtschuk O, Qin A, et al. A Phase 3b, Randomized, Open-Label, Parallel Group, Multicenter Study to Assess Efficacy, Safety, and Tolerability of Two Dosing Regimens of Ropeginterferon Alfa-2b-Njft (P1101) in Adult Patients with Polycythemia Vera. Blood. 2023 Nov 2;142(Supplement 1):6444. DOI: https://doi.org/10.1182/blood-2023-189912
Barosi G, Birgegard G, Finazzi G, Griesshammer M, Harrison C, Hasselbalch H, et al. A unified definition of clinical resistance and intolerance to hydroxycarbamide in polycythaemia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus process. Br J Haematol. 2010;148(6):961–3. DOI: https://doi.org/10.1111/j.1365-2141.2009.08019.x
Barosi G, Besses C, Birgegard G, Briere J, Cervantes F, Finazzi G, et al. A unified definition of clinical resistance/intolerance to hydroxyurea in essential thrombocythemia: results of a consensus process by an international working group. Leukemia. 2007 Feb;21(2):277–80. DOI: https://doi.org/10.1038/sj.leu.2404473
Yacoub A, Mascarenhas J, Kosiorek H, Prchal JT, Berenzon D, Baer MR, et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019 Oct 31;134(18):1498–509. DOI: https://doi.org/10.1182/blood.2019000428
Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N Engl J Med. 2015 Jan 29;372(5):426–35. DOI: https://doi.org/10.1056/NEJMoa1409002
Passamonti F, Griesshammer M, Palandri F, Egyed M, Benevolo G, Devos T, et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol. 2017 Jan 1;18(1):88–99. DOI: https://doi.org/10.1016/S1470-2045(16)30558-7
Harrison CN, Nangalia J, Boucher R, Jackson A, Yap C, O’Sullivan J, et al. Ruxolitinib Versus Best Available Therapy for Polycythemia Vera Intolerant or Resistant to Hydroxycarbamide in a Randomized Trial. J Clin Oncol. 2023 Jul;41(19):3534–44. DOI: https://doi.org/10.1200/JCO.22.01935
Barbui T, Vannucchi AM, De Stefano V, Carobbio A, Ghirardi A, Carioli G, et al. Ropeginterferon versus Standard Therapy for Low-Risk Patients with Polycythemia Vera. NEJM Evid. 2023 May 23;2(6):EVIDoa2200335. DOI: https://doi.org/10.1056/EVIDoa2200335
Barbui T, Vannucchi AM, Stefano VD, Masciulli A, Carobbio A, Ferrari A, et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study): a multicentre, randomised phase 2 trial. Lancet Haematol. 2021 Mar 1;8(3):e175–84. DOI: https://doi.org/10.1016/S2352-3026(20)30373-2
Ganz T. Anemia of Inflammation. N Engl J Med. 2019 Sep 19;381(12):1148–57. DOI: https://doi.org/10.1056/NEJMra1804281
Kremyanskaya M, Kuykendall AT, Pemmaraju N, Ritchie EK, Gotlib J, Gerds A, et al. Rusfertide, a Hepcidin Mimetic, for Control of Erythrocytosis in Polycythemia Vera. N Engl J Med. 2024 Feb 21;390(8):723–35. DOI: https://doi.org/10.1056/NEJMoa2308809
Bankar A, Pettit K, Shatzel J, Yacoub A, Pemmaraju N, Gill H, et al. VERIFY: A randomized controlled phase 3 study of the hepcidin mimetic rusfertide (PTG-300) in patients with polycythemia vera (PV). J Clin Oncol. 2024 Jun;42(16_suppl):TPS6592–TPS6592. DOI: https://doi.org/10.1200/JCO.2024.42.16_suppl.TPS6592
Barbui T. Appropriate management of Polycythemia Vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Hematol Transfus Cell Ther. 2022 Oct 1;44:S3–4. DOI: https://doi.org/10.1016/j.htct.2022.09.1190
Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol Off J Am Soc Clin Oncol. 2011 Feb 20;29(6):761–70. DOI: https://doi.org/10.1200/JCO.2010.31.8436
Barbui T, Vannucchi AM, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015 Nov;5(11):e369–e369.
Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia: 2024 update on diagnosis, risk stratification, and management. Am J Hematol. 2024;99(4):697–718. DOI: https://doi.org/10.1002/ajh.27216
Alvarez-Larrán A, Pereira A, Guglielmelli P, Hernández-Boluda JC, Arellano-Rodrigo E, Ferrer-Marín F, et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica. 2016 Aug 1;101(8):926–31. DOI: https://doi.org/10.3324/haematol.2016.146654
Alvarez-Larrán A, Cervantes F, Pereira A, Arellano-Rodrigo E, Pérez-Andreu V, Hernández-Boluda JC, et al. Observation versus antiplatelet therapy as primary prophylaxis for thrombosis in low-risk essential thrombocythemia. Blood. 2010 Aug 26;116(8):1205–10; quiz 1387. DOI: https://doi.org/10.1182/blood-2010-01-263319
Harrison CN, Campbell PJ, Buck G, Wheatley K, East CL, Bareford D, et al. Hydroxyurea Compared with Anagrelide in High-Risk Essential Thrombocythemia. N Engl J Med. 2005 Jul 7;353(1):33–45. DOI: https://doi.org/10.1056/NEJMoa043800
Harrison CN, Mead AJ, Panchal A, Fox S, Yap C, Gbandi E, et al. Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood. 2017 Oct 26;130(17):1889–97. DOI: https://doi.org/10.1182/blood-2017-05-785790
Verstovsek S, Komatsu N, Gill H, Jin J, Lee SE, Hou HA, et al. SURPASS-ET: phase III study of ropeginterferon alfa-2b versus anagrelide as second-line therapy in essential thrombocythemia. Future Oncol Lond Engl. 2022 Sep;18(27):2999–3009. DOI: https://doi.org/10.2217/fon-2022-0596
Barbui T, Vannucchi AM, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5(11):e369. DOI: https://doi.org/10.1038/bcj.2015.94
Gangat N, Tefferi A. Myelofibrosis biology and contemporary management. Br J Haematol. 2020;191(2):152–70. DOI: https://doi.org/10.1111/bjh.16576
Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018 Oct 11;379(15):1416–30. DOI: https://doi.org/10.1056/NEJMoa1716614
Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009 Mar 26;113(13):2895–901. DOI: https://doi.org/10.1182/blood-2008-07-170449
Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010 Mar 4;115(9):1703–8. DOI: https://doi.org/10.1182/blood-2009-09-245837
Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol Off J Am Soc Clin Oncol. 2011 Feb 1;29(4):392–7. DOI: https://doi.org/10.1200/JCO.2010.32.2446
Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013 Sep;27(9):1861–9. DOI: https://doi.org/10.1038/leu.2013.119
Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, et al. MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J Clin Oncol. 2018 Jun 10;36(17):1769–70. DOI: https://doi.org/10.1200/JCO.2018.78.9867
Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients With Primary Myelofibrosis. J Clin Oncol. 2018 Feb;36(4):310–8. DOI: https://doi.org/10.1200/JCO.2017.76.4886
Passamonti F, Giorgino T, Mora B, Guglielmelli P, Rumi E, Maffioli M, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia. 2017 Dec;31(12):2726–31. DOI: https://doi.org/10.1038/leu.2017.169
Kröger N, Bacigalupo A, Barbui T, Ditschkowski M, Gagelmann N, Griesshammer M, et al. Indication and management of allogeneic haematopoietic stem-cell transplantation in myelofibrosis: updated recommendations by the EBMT/ELN International Working Group. Lancet Haematol. 2024 Jan;11(1):e62–74. DOI: https://doi.org/10.1016/S2352-3026(23)00305-8
Maze D, Arcasoy MO, Henrie R, Cerquozzi S, Kamble R, Al-Hadidi S, et al. Upfront allogeneic transplantation versus JAK inhibitor therapy for patients with myelofibrosis: a North American collaborative study. Bone Marrow Transplant. 2024 Feb;59(2):196–202. DOI: https://doi.org/10.1038/s41409-023-02146-6
Davidson MB, Gupta V. Application of Stem Cell Therapy in Myelofibrosis. Hematol Oncol Clin North Am. 2021 Apr;35(2):391–407. DOI: https://doi.org/10.1016/j.hoc.2020.12.004
Rajendra A, Gupta V. Advances in Stem Cell Transplantation for Myelofibrosis. Curr Hematol Malig Rep. 2024 Sep 6; DOI: https://doi.org/10.1007/s11899-024-00742-x
Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK Inhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis. N Engl J Med. 2012 Mar 1;366(9):787–98. DOI: https://doi.org/10.1056/NEJMoa1110556
Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N Engl J Med. 2012 Mar 1;366(9):799–807. DOI: https://doi.org/10.1056/NEJMoa1110557
Gupta V, Cerquozzi S, Foltz L, Hillis C, Devlin R, Elsawy M, et al. Patterns of Ruxolitinib Therapy Failure and Its Management in Myelofibrosis: Perspectives of the Canadian Myeloproliferative Neoplasm Group. JCO Oncol Pract. 2020 Jul;16(7):351–9. DOI: https://doi.org/10.1200/JOP.19.00506
Pardanani A, Harrison C, Cortes JE, Cervantes F, Mesa RA, Milligan D, et al. Safety and Efficacy of Fedratinib in Patients With Primary or Secondary Myelofibrosis: A Randomized Clinical Trial. JAMA Oncol. 2015 Aug 1;1(5):643–51. DOI: https://doi.org/10.1001/jamaoncol.2015.1590
Pardanani A, Tefferi A, Masszi T, Mishchenko E, Drummond M, Jourdan E, et al. Updated results of the placebo-controlled, phase III JAKARTA trial of fedratinib in patients with intermediate-2 or high-risk myelofibrosis. Br J Haematol. 2021 Oct;195(2):244–8. DOI: https://doi.org/10.1111/bjh.17727
Harrison CN, Schaap N, Vannucchi AM, Kiladjian JJ, Tiu RV, Zachee P, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017 Jul 1;4(7):e317–24. DOI: https://doi.org/10.1016/S2352-3026(17)30088-1
Gupta V, Yacoub A, Verstovsek S, Mesa R, Harrison C, Vannucchi AM, et al. Safety and Efficacy of Fedratinib in Patients with Primary (P), Post-Polycythemia Vera (Post-PV), and Post-Essential Thrombocythemia (Post-ET) Myelofibrosis (MF) Previously Treated with Ruxolitinib: Primary Analysis of the FREEDOM Trial. Blood. 2022 Nov 15;140(Supplement 1):3935–7. DOI: https://doi.org/10.1182/blood-2022-156669
PRODUCT MONOGRAPH FEDRATINIB HEALTH CANADA [Internet]. [cited 2024 Oct 29]. Available from: https://pdf.hres.ca/dpd_pm/00076169.PDF
Mesa RA, Kiladjian JJ, Catalano JV, Devos T, Egyed M, Hellmann A, et al. SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor–Naïve Patients With Myelofibrosis. J Clin Oncol. 2017 Dec;35(34):3844–50. DOI: https://doi.org/10.1200/JCO.2017.73.4418
Mesa R, Oh ST, Gerds AT, Gupta V, Catalano J, Cervantes F, et al. Momelotinib reduces transfusion requirements in patients with myelofibrosis. Leuk Lymphoma. 2022 Jun 7;63(7):1718–22. DOI: https://doi.org/10.1080/10428194.2022.2043304
Mascarenhas J, Hoffman R, Talpaz M, Gerds AT, Stein B, Gupta V, et al. Pacritinib vs Best Available Therapy, Including Ruxolitinib, in Patients With Myelofibrosis: A Randomized Clinical Trial. JAMA Oncol. 2018 May 1;4(5):652–9. DOI: https://doi.org/10.1001/jamaoncol.2017.5818
Rampal RK, Grosicki S, Chraniuk D, Abruzzese E, Bose P, Gerds AT, et al. Pelabresib in Combination with Ruxolitinib for Janus Kinase Inhibitor Treatment-Naïve Patients with Myelofibrosis: Results of the MANIFEST-2 Randomized, Double-Blind, Phase 3 Study. Blood. 2023 Nov 2;142(Supplement 1):628. DOI: https://doi.org/10.1182/blood-2023-179141
Pemmaraju N, Mead AJ, Somervaille TC, McCloskey JK, Palandri F, Koschmieder S, et al. Transform-1: A Randomized, Double-Blind, Placebo-Controlled, Multicenter, International Phase 3 Study of Navitoclax in Combination with Ruxolitinib Versus Ruxolitinib Plus Placebo in Patients with Untreated Myelofibrosis. Blood. 2023 Nov 2;142(Supplement 1):620. DOI: https://doi.org/10.1182/blood-2023-173509
Mascarenhas J, Kremyanskaya M, Patriarca A, Palandri F, Devos T, Passamonti F, et al. MANIFEST: Pelabresib in Combination With Ruxolitinib for Janus Kinase Inhibitor Treatment-Naïve Myelofibrosis. J Clin Oncol. 2023 Nov 10;41(32):4993–5004. DOI: https://doi.org/10.1200/JCO.22.01972
Elena C, Passamonti F, Rumi E, Malcovati L, Arcaini L, Boveri E, et al. Red blood cell transfusion-dependency implies a poor survival in primary myelofibrosis irrespective of IPSS and DIPSS. Haematologica. 2011 Jan;96(1):167–70. DOI: https://doi.org/10.3324/haematol.2010.031831
Gupta V, Harrison C, Hexner EO, Al-Ali HK, Foltz L, Montgomery M, et al. The impact of anemia on overall survival in patients with myelofibrosis treated with ruxolitinib in the COMFORT studies. Haematologica. 2016 Dec 1;101(12):e482–4. DOI: https://doi.org/10.3324/haematol.2016.151449
Cervantes F, Alvarez-Larrán A, Hernández-Boluda JC, Sureda A, Granell M, Vallansot R, et al. Darbepoetin-alpha for the anaemia of myelofibrosis with myeloid metaplasia. Br J Haematol. 2006 Jul;134(2):184–6. DOI: https://doi.org/10.1111/j.1365-2141.2006.06142.x
Cervantes F, Alvarez-Larrán A, Hernández-Boluda JC, Sureda A, Torrebadell M, Montserrat E. Erythropoietin treatment of the anaemia of myelofibrosis with myeloid metaplasia: results in 20 patients and review of the literature. Br J Haematol. 2004 Nov;127(4):399–403. DOI: https://doi.org/10.1111/j.1365-2141.2004.05229.x
Tsiara SN, Chaidos A, Bourantas LK, Kapsali HD, Bourantas KL. Recombinant human erythropoietin for the treatment of anaemia in patients with chronic idiopathic myelofibrosis. Acta Haematol. 2007;117(3):156–61. DOI: https://doi.org/10.1159/000097463
Passamonti F, Harrison CN, Mesa RA, Kiladjian JJ, Vannucchi AM, Verstovsek S. Anemia in myelofibrosis: Current and emerging treatment options. Crit Rev Oncol Hematol. 2022 Dec 1;180:103862. DOI: https://doi.org/10.1016/j.critrevonc.2022.103862
Gerds AT, Harrison C, Kiladjian JJ, Mesa R, Vannucchi AM, Komrokji R, et al. Safety and efficacy of luspatercept for the treatment of anemia in patients with myelofibrosis. Blood Adv. 2024 Aug 28;8(17):4511–22. DOI: https://doi.org/10.1182/bloodadvances.2024012939
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Canadian Hematology Today
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.