Myeloproliferative neoplasms in 2022

A concise review

Authors

  • Dawn Maze, MD, MSc, FRCPC

DOI:

https://doi.org/10.58931/cht.2022.117

Abstract

The Philadelphia chromosome(Ph)-negative myeloproliferative neoplasms (MPN) are comprised of a heterogenous group of disorders of myeloid hematopoietic stem cells that include polycythemia vera (PV), essential thrombocythemia (ET), and idiopathic myelofibrosis (MF). MPN are characterized by constitutional and other disease-related symptoms, an increased risk for thrombotic and hemorrhagic events, and a propensity to transform to acute myeloid leukemia (AML). Progress in our understanding of the molecular pathophysiology of MPN has led to improved prognostic tools, and increasingly personal risk-stratification. In PV, there has been renewed interest in interferon (IFN) for its potential to directly target the malignant clone and exert a disease-modifying effect. In MF, the introduction of Janus Kinase (JAK) inhibitors has significantly altered the therapeutic landscape over the past decade. Ongoing development in the area of JAK inhibitor therapy, as well as several novel pathways, holds promise for improved hematologic responses, lessening of overall burden of illness, increased quality of life, and application to a broader cohort of patients.

Author Biography

Dawn Maze, MD, MSc, FRCPC

Dr. Dawn Maze is a member of the Leukemia Program and the Elizabeth and Tony Comper MPN Program at the Princess Margaret Cancer Centre. Dr. Maze earned her medical degree and master’s degree in clinical epidemiology from Memorial University. She completed postgraduate training in hematology at Queen’s University, followed by a fellowship in blood and marrow transplantation and transfusion medicine research at The Ottawa Hospital. Dr. Maze’s current research interests include MPN management in the adolescent and young adult population, particularly around pregnancy. She is also interested in optimizing transfusion support for patients with hematologic malignancies and is Medical Director for the Malignant Hematology Day Unit. She is the primary investigator or co-investigator on numerous clinical trials of treatment and supportive care of patients with hematologic malignancies.

References

Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365(9464):1054–61. DOI: https://doi.org/10.1016/S0140-6736(05)71142-9

Mejia-Ochoa M, Acevedo Toro PA, Cardona-Arias JA. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations: 2000–2018. BMC Cancer 2019;19(1):590. DOI: https://doi.org/10.1186/s12885-019-5764-4

Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356(5):459–68. DOI: https://doi.org/10.1056/NEJMoa065202

Merlinsky TR, Levine RL, Pronier E. Unfolding the role of calreticulin in myeloproliferative neoplasm pathogenesis. Clinical Cancer Research 2019;25(10):2956-62. DOI: https://doi.org/10.1158/1078-0432.CCR-18-3777

How J, Hobbs GS, Mullally A. Mutant calreticulin in myeloproliferative neoplasms. Blood 2019; 134(25): 2242–8. DOI: https://doi.org/10.1182/blood.2019000622

Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013;369(25):2391–2405. DOI: https://doi.org/10.1056/NEJMoa1312542

Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013;369(25):2379–90. DOI: https://doi.org/10.1056/NEJMoa1311347

Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood 2006;107(5):1864–71. DOI: https://doi.org/10.1182/blood-2005-06-2600

Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013;27(9):1861–9. DOI: https://doi.org/10.1038/leu.2013.119

Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014;123(14):2220–8. DOI: https://doi.org/10.1182/blood-2013-11-537167

Hasselbalch H. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine & Growth Factor Reviews 2013;24(2):133-45. DOI: https://doi.org/10.1016/j.cytogfr.2013.01.004

Bjørn ME, Hasselbalch HC. The role of reactive oxygen species in myelo¬fibrosis and related neoplasms. Mediators of Inflammation 2015;Oct 2015:648090. DOI: https://doi.org/10.1155/2015/648090

Mesa RA, Miller CB, Thyne M, Mangan J, Goldberger S, Fazal S et al. Differences in treatment goals and perception of symptom burden between patients with myeloproliferative neoplasms (MPNs) and hematologists/oncologists in the United States: Findings from the MPN Landmark survey. Cancer 2017;123(3):449-58. DOI: https://doi.org/10.1002/cncr.30325

Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. American Journal of Hematology 2020;95:1599-1613. DOI: https://doi.org/10.1002/ajh.26008

Barbui T, Finazzi G, Carobbio A, Thiele J, Passamonti F, Rumi E, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood 2012;120:5128–33. DOI: https://doi.org/10.1182/blood-2012-07-444067

Barbui T, Terreri A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia 2018;32:1057-69. DOI: https://doi.org/10.1038/s41375-018-0077-1

National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology. Myeloproliferative Neoplasms Version 2.2021. 2021 Aug 18;National Comprehensive Cancer Network. Available from: https://www.nccn.org/professionals/physician_gls/ pdf/mpn.pdf.

Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M et al. MIPSS70: Mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. Journal of Clinical Oncology 2018;36(4):310-18. DOI: https://doi.org/10.1200/JCO.2017.76.4886

Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, Vannucchi AM. MIPSS70+ version 2.0: Mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. Journal of Clinical Oncology 2018;36(17):1769-70. DOI: https://doi.org/10.1200/JCO.2018.78.9867

Passamonti F, Giorgino T, Mora B, Guglielmelli P, Rumi E, Maffioli M, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia 2017;31(12):2726-31. DOI: https://doi.org/10.1038/leu.2017.169

Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Cazzola M, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010;115:1703–08. DOI: https://doi.org/10.1182/blood-2009-09-245837

Marchioloi R, Finazzi G, Specchia G, Cacciola R, Cavazzina R,Cilloni D, et al. Cardiovascular events and intensity of treatment in polycythemia vera. New England Journal of Medicine 2013;368:22-33. DOI: https://doi.org/10.1056/NEJMoa1208500

Scherber RM, Geyer HL, Dueck AC, Kosiorek HE, Finzzi G, Cavazzina R, et al. The potential role of hematocrit control on symptom burden among polycythemia vera patients: Insights from the CYTO-PV and MPN-SAF patient cohorts. Leukemia & Lymphoma 2017;58(6):1481-7. DOI: https://doi.org/10.1080/10428194.2016.1246733

Barbui T, Vannucchi AM, De Stefano V, Masciulli A, Carobbio A, Ferrari A, et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemic vera (Low-PV study): a multicentre, randomized phase 2 trial. The Lancet Haemology 2021;8(3):e175-84. DOI: https://doi.org/10.1016/S2352-3026(20)30373-2

Ginzburg Y, Kremyanskaya M, Kuykendall AT, Yacoub A, Yang J, Gupta SK, et al. Hepcidin Mimetic (PTG-300) reverses iron deficiency while controlling hematocrit in polycythemiavera patients. Blood 2020;136(Supplement 1):40-1. DOI: https://doi.org/10.1182/blood-2020-137304

Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon alfa-2b versus standard therapy for polycythemia vera (PROUD-PV and CONTINUATION-PV): A randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematology 2020;7:e196-208. DOI: https://doi.org/10.2139/ssrn.3426089

Kiladjian JJ, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed, M, et al. Towards a potential operational cure in patients with polycythaemia vera? Results from five years’ropeginterferon alpha-2b therapy in a randomized setting. EHA 2021. EP1076.

Alvarez-Larran A, Pereira A, Guglielmelli P, Hernandez-Bolunda JC, Arellano-Rodrigo E, Ferrer-Marin F, et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica 2016;101(8):926-31. DOI: https://doi.org/10.3324/haematol.2016.146654

Gangat N, Szuber N, Jawaid T, Hanson CA, Pardanani A, Tefferi A. Young platelet millionaires with essential thrombocythemia. American Journal of Hematology 2021;96(4):E93-5. DOI: https://doi.org/10.1002/ajh.26114

Gupta V, Griesshammer M, Martino B, et al. Analysis of predictors of response to ruxolitinib in patients with myelofibrosis in the phase 3b expanded-access JUMP study. Leukemia & Lymphoma 2021;62(4):918-26. DOI: https://doi.org/10.1080/10428194.2020.1845334

Maze D, Arcasoy MO, Henrie R, Cerquozzi S, Damble R, Al Hadidi SA, et al. Role of Allogeneic Hematopoietic Cell Transplant in Patients with Myelofibrosis in the JAK Inhibitor Era. Blood 2020;136(Supplement 1):52-3. DOI: https://doi.org/10.1182/blood-2020-141790

Gowin K, Ballen K, Ahn KW, Hu ZH, Ali H, Arcasoy MO, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Advances 2020;4(9):1965-73. DOI: https://doi.org/10.1182/bloodadvances.2019001084

Harrison C, Kiladjian J-J, Al-Ali H-K, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. New England Journal of Medicine 2012;366(9):787-798. DOI: https://doi.org/10.1056/NEJMoa1110556

Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. New England Journal of Medicine 2012;366(9):799-807. DOI: https://doi.org/10.1056/NEJMoa1110557

Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. New England Journal of Medicine 2020;382:140-51. DOI: https://doi.org/10.1056/NEJMoa1908892

Gerds A, Vannucchi A, Passamonti F, Kremyanskaya M, Gotlib J, Palmer JM, et al. Duration of response to luspatercept in patients requiring red blood cell transfusions with myelofibrosis: Updated data from the phase 2 ACE-536-MF-001 Study. Blood 2020;136(Supplement 1):47-8. DOI: https://doi.org/10.1182/blood-2020-137265

Published

2022-03-01

How to Cite

1.
Maze D. Myeloproliferative neoplasms in 2022: A concise review. Can Hematol Today [Internet]. 2022 Mar. 1 [cited 2025 Jan. 22];1(1):23–35. Available from: https://canadianhematologytoday.com/article/view/1-1-3-maze

Issue

Section

Articles