Advancing BTK Inhibition: Non‑Covalent Bruton Tyrosine Kinase Inhibitors and Their Emerging Role in Canadian Practice
DOI:
https://doi.org/10.58931/cht.2025.4s0469Abstract
The B-cell receptor (BCR) signaling pathway is a key driver in the development of B-cell malignancies, such as chronic lymphocytic leukemia (CLL), Waldenstrom’s macroglobulinemia (WM), mantle cell lymphoma (MCL) and marginal zone lymphoma (MZL), by promoting abnormal proliferation and survival. Antigen binding to the BCR triggers activation of Bruton’s tyrosine kinase (BTK), which in turn leads to activation of the nuclear factor kappa-B (NFκB) pathway, leading to nuclear translocation of NF-κB transcription factors. The essential role of BTK activation in BCR signaling highlights the rationale for BTK inhibition as a targeted therapeutic intervention in B-cell malignancies, effectively suppressing BCR signaling and limiting B-cell proliferation and survival.
References
Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer. 2018;18(3):148-167. doi:10.1038/NRC.2017.121 DOI: https://doi.org/10.1038/nrc.2017.121
Weber M, Treanor B, Depoil D, et al. Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. J Exp Med. 2008;205(4):853-868. doi:10.1084/JEM.20072619 DOI: https://doi.org/10.1084/jem.20072619
Tam CS, Opat S, D’Sa S, et al. A randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic Waldenström macroglobulinemia: the ASPEN study. Blood. 2020;136(18):2038-2050. doi:10.1182/BLOOD.2020006844 DOI: https://doi.org/10.1182/blood.2020006844
Sharman JP, Egyed M, Jurczak W, et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial. Lancet (London, England). 2020;395(10232):1278-1291. doi:10.1016/S0140-6736(20)30262-2 DOI: https://doi.org/10.1016/S0140-6736(20)30262-2
Shanafelt TD, Wang X V., Kay NE, et al. Ibrutinib-Rituximab or Chemoimmunotherapy for Chronic Lymphocytic Leukemia. N Engl J Med. 2019;381(5):432-443. doi:10.1056/NEJMOA1817073 DOI: https://doi.org/10.1056/NEJMoa1817073
Tam CS, Brown JR, Kahl BS, et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): a randomised, controlled, phase 3 trial. Lancet Oncol. 2022;23(8):1031-1043. doi:10.1016/S1470-2045(22)00293-5 DOI: https://doi.org/10.1016/S1470-2045(22)00293-5
Ran F, Liu Y, Wang C, et al. Review of the development of BTK inhibitors in overcoming the clinical limitations of ibrutinib. Eur J Med Chem. 2022;229. doi:10.1016/J.EJMECH.2021.114009 DOI: https://doi.org/10.1016/j.ejmech.2021.114009
Nakhoda S, Vistarop A, Wang YL. Resistance to Bruton tyrosine kinase inhibition in chronic lymphocytic leukaemia and non-Hodgkin lymphoma. Br J Haematol. 2023;200(2):137-149. doi:10.1111/BJH.18418 DOI: https://doi.org/10.1111/bjh.18418
Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507-516. doi:10.1056/NEJMOA1306220 DOI: https://doi.org/10.1056/NEJMoa1306220
Woyach JA, Ruppert AS, Guinn D, et al. BTKC481S-Mediated Resistance to Ibrutinib in Chronic Lymphocytic Leukemia. J Clin Oncol. 2017;35(13):1437-1443. doi:10.1200/JCO.2016.70.2282 DOI: https://doi.org/10.1200/JCO.2016.72.0102
Woyach JA, Furman RR, Liu T-M, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286-2294. doi:10.1056/NEJMOA1400029 DOI: https://doi.org/10.1056/NEJMoa1400029
Furman RR, Cheng S, Lu P, et al. Ibrutinib resistance in chronic lymphocytic leukemia. N Engl J Med. 2014;370(24):2352-2354. doi:10.1056/NEJMC1402716 DOI: https://doi.org/10.1056/NEJMc1402716
Tam CS, Balendran S, Blombery P. Novel mechanisms of resistance in CLL: variant BTK mutations in second-generation and noncovalent BTK inhibitors. Blood. 2025;145(10). doi:10.1182/BLOOD.2024026672 DOI: https://doi.org/10.1182/blood.2024026672
Woyach JA, Jones D, Jurczak W, et al. Mutational profile in previously treated patients with chronic lymphocytic leukemia progression on acalabrutinib or ibrutinib. Blood. 2024;144(10):1061-1068. doi:10.1182/blood.2023023659
Brown JR, Li J, Eichhorst BF, et al. Acquired mutations in patients with relapsed/refractory CLL who progressed in the ALPINE study. Blood Adv. 2025;9(8):1918-1926. doi:10.1182/bloodadvances.2024014206 DOI: https://doi.org/10.1182/bloodadvances.2024014206
Xu L, Tsakmaklis N, Yang G, et al. Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia. Blood. 2017;129(18):2519-2525. doi:10.1182/BLOOD-2017-01-761726 DOI: https://doi.org/10.1182/blood-2017-01-761726
Hershkovitz-Rokah O, Pulver D, Lenz G, Shpilberg O. Ibrutinib resistance in mantle cell lymphoma: clinical, molecular and treatment aspects. Br J Haematol. 2018;181(3):306-319. doi:10.1111/BJH.15108 DOI: https://doi.org/10.1111/bjh.15108
Wiśniewski K, Puła B. A Review of Resistance Mechanisms to Bruton’s Kinase Inhibitors in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2024;25(10). doi:10.3390/ijms25105246 DOI: https://doi.org/10.3390/ijms25105246
Dhami K, Chakraborty A, Gururaja TL, et al. Kinase-deficient BTK mutants confer ibrutinib resistance through activation of the kinase HCK. Sci Signal. 2022;15(736). doi:10.1126/SCISIGNAL.ABG5216 DOI: https://doi.org/10.1126/scisignal.abg5216
Montoya S, Bourcier J, Noviski M, et al. Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science. 2024;383(6682). doi:10.1126/SCIENCE.ADI5798 DOI: https://doi.org/10.1126/science.adi5798
Woyach JA, Jones D, Jurczak W, et al. Mutational profile in previously treated patients with chronic lymphocytic leukemia progression on acalabrutinib or ibrutinib. Blood. 2024;144(10):1061-1068. doi:10.1182/BLOOD.2023023659 DOI: https://doi.org/10.1182/blood.2023023659
Shaffer AL, Phelan JD, Wang JQ, et al. Overcoming Acquired Epigenetic Resistance to BTK Inhibitors. Blood cancer Discov. 2021;2(6):631-647. doi:10.1158/2643-3230.BCD-21-0063 DOI: https://doi.org/10.1158/2643-3230.BCD-21-0063
Gomez EB, Ebata K, Randeria HS, et al. Preclinical characterization of pirtobrutinib, a highly selective, noncovalent (reversible) BTK inhibitor. Blood. 2023;142(1):62-72. doi:10.1182/BLOOD.2022018674
Allan JN, Pinilla-Ibarz J, Gladstone DE, et al. Phase Ib dose-escalation study of the selective, non-covalent, reversible Bruton’s tyrosine kinase inhibitor vecabrutinib in B-cell malignancies. Haematologica. 2022;107(4):984-987. doi:10.3324/HAEMATOL.2021.280061 DOI: https://doi.org/10.3324/haematol.2021.280061
Langlois J, Lange S, Ebeling M, et al. Fenebrutinib, a Bruton’s tyrosine kinase inhibitor, blocks distinct human microglial signaling pathways. J Neuroinflammation. 2024;21(1):276. doi:10.1186/s12974-024-03267-5 DOI: https://doi.org/10.1186/s12974-024-03267-5
Reiff SD, Mantel R, Smith LL, et al. The BTK Inhibitor ARQ 531 Targets Ibrutinib-Resistant CLL and Richter Transformation. Cancer Discov. 2018;8(10):1300-1315. doi:10.1158/2159-8290.CD-17-1409 DOI: https://doi.org/10.1158/2159-8290.CD-17-1409
Timofeeva N, Herrera B, Tantawy SI, et al. Impact of Docirbrutinib (AS-1763) Treatment in CLL: Preclinical Data and Early Clinical Biomarkers. Blood. 2024;144(Supplement 1):1850-1850. doi:10.1182/BLOOD-2024-210788 DOI: https://doi.org/10.1182/blood-2024-210788
Mato AR, Woyach JA, Brown JR, et al. Pirtobrutinib after a Covalent BTK Inhibitor in Chronic Lymphocytic Leukemia. N Engl J Med. 2023;389(1):33-44. doi:10.1056/NEJMOA2300696 DOI: https://doi.org/10.1056/NEJMoa2300696
Mato AR, Nabhan C, Thompson MC, et al. Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: a real-world analysis. Haematologica. 2018;103(5):874-879. doi:10.3324/HAEMATOL.2017.182907 DOI: https://doi.org/10.3324/haematol.2017.182907
Khelifi RS, Huang SJ, Savage KJ, et al. Population-level impact of ibrutinib for chronic lymphocytic leukemia in British Columbia, Canada. Leuk Lymphoma. 2023;64(6):1129-1138. doi:10.1080/10428194.2023.2199340 DOI: https://doi.org/10.1080/10428194.2023.2199340
Shah NN, Wang M, Roeker LE, et al. Pirtobrutinib monotherapy in Bruton tyrosine kinase inhibitor-intolerant patients with B-cell malignancies: results of the phase I/II BRUIN trial. Haematologica. 2025;110(1):92-102. doi:10.3324/HAEMATOL.2024.285754 DOI: https://doi.org/10.3324/haematol.2024.285754
Wierda WG, Shah NN, Cheah CY, et al. Pirtobrutinib, a highly selective, non-covalent (reversible) BTK inhibitor in patients with B-cell malignancies: analysis of the Richter transformation subgroup from the multicentre, open-label, phase 1/2 BRUIN study. Lancet Haematol. 2024;11(9):e682-e692. doi:10.1016/S2352-3026(24)00172-8 DOI: https://doi.org/10.1016/S2352-3026(24)00172-8
Sharman JP, Munir T, Grosicki S, et al. BRUIN CLL-321: Randomized Phase III Trial of Pirtobrutinib Versus Idelalisib Plus Rituximab (IdelaR) or Bendamustine Plus Rituximab (BR) in BTK Inhibitor Pretreated Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Blood. 2024;144(Supplement 1):886. doi:10.1182/BLOOD-2024-198147 DOI: https://doi.org/10.1182/blood-2024-198147
Jain N, Ferrajoli A, Swaminathan M, et al. Combined Pirtobrutinib, Venetoclax, and Obinutuzumab As First-Line Treatment of Patients with Chronic Lymphocytic Leukemia (CLL). Blood. 2024;144(Supplement 1):1011-1011. doi:10.1182/BLOOD-2024-211454 DOI: https://doi.org/10.1182/blood-2024-211454
Wang ML, Jurczak W, Zinzani PL, et al. Pirtobrutinib in Covalent Bruton Tyrosine Kinase Inhibitor Pretreated Mantle-Cell Lymphoma. J Clin Oncol. 2023;41(24):3988-3997. doi:10.1200/JCO.23.00562 DOI: https://doi.org/10.1200/JCO.23.00562
Woyach JA, Stephens DM, Flinn IW, et al. First-in-Human Study of the Reversible BTK Inhibitor Nemtabrutinib in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia and B-Cell Non–Hodgkin Lymphoma. Cancer Discov. 2024;14(1):66-75. doi:10.1158/2159-8290.CD-23-0670 DOI: https://doi.org/10.1158/2159-8290.CD-23-0670
Woyach J, Flinn IW, Awan F, et al. P628: UPDATED ANALYSIS OF BELLWAVE-001: A PHASE 1/2 OPEN-LABEL DOSE-EXPANSION STUDY OF THE EFFICACY AND SAFETY OF NEMTABRUTINIB FOR THE TREATMENT OF B-CELL MALIGNANCIES. HemaSphere. 2023;7(Suppl):e7809236. doi:10.1097/01.HS9.0000969416.78092.36 DOI: https://doi.org/10.1097/01.HS9.0000969416.78092.36
Byrd JC, Smith S, Wagner-Johnston N, et al. First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget. 2018;9(16):13023-13035. doi:10.18632/ONCOTARGET.24310 DOI: https://doi.org/10.18632/oncotarget.24310
Isenberg D, Furie R, Jones NS, et al. Efficacy, Safety, and Pharmacodynamic Effects of the Bruton’s Tyrosine Kinase Inhibitor Fenebrutinib (GDC-0853) in Systemic Lupus Erythematosus: Results of a Phase II, Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol (Hoboken, NJ). 2021;73(10):1835-1846. doi:10.1002/ART.41811 DOI: https://doi.org/10.1002/art.41811
Jain N, Coombs CC, D’Olimpio J, et al. Preliminary Results from a Phase 1b Study of Non-Covalent Pan-Mutant BTK Inhibitor Docirbrutinib (AS-1763) in Patients with Previously Treated B-Cell Malignancies. Blood. 2024;144(Supplement 1):1866-1866. doi:10.1182/BLOOD-2024-208549 DOI: https://doi.org/10.1182/blood-2024-208549
Woyach JA, Brander DM, Hu B, et al. LP-168 (Rocbrutinib), a Novel Covalent and Non-Covalent Next-Generation Inhibitor of Bruton’s Tyrosine Kinase: Updates on the Phase 1 Trial and Initial Results of the CLL Gatekeeper Mutation Cohort. Blood. 2024;144(Supplement 1):4622-4622. doi:10.1182/BLOOD-2024-205775 DOI: https://doi.org/10.1182/blood-2024-205775
Wang E, Mi X, Thompson MC, et al. Mechanisms of Resistance to Noncovalent Bruton’s Tyrosine Kinase Inhibitors. N Engl J Med. 2022;386(8):735-743. doi:10.1056/nejmoa2114110 DOI: https://doi.org/10.1056/NEJMoa2114110
Naeem A, Utro F, Wang Q, et al. Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance. Blood Adv. 2023;7(9):1929-1943. doi:10.1182/BLOODADVANCES.2022008447 DOI: https://doi.org/10.1182/bloodadvances.2022008447
Brown JR, Desikan SP, Nguyen B, et al. Genomic Evolution and Resistance during Pirtobrutinib Therapy in Covalent BTK-Inhibitor (cBTKi) Pre-Treated Chronic Lymphocytic Leukemia Patients: Updated Analysis from the BRUIN Study. Blood. 2023;142(Supplement 1):326. doi:10.1182/BLOOD-2023-180143 DOI: https://doi.org/10.1182/blood-2023-180143
Barr PM, Owen C, Robak T, et al. Up to 8-year follow-up from RESONATE-2: first-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022;6(11):3440-3450. doi:10.1182/bloodadvances.2021006434 DOI: https://doi.org/10.1182/bloodadvances.2021006434
Al-Sawaf O, Robrecht S, Zhang C, et al. Venetoclax-obinutuzumab for previously untreated chronic lymphocytic leukemia: 6-year results of the randomized phase 3 CLL14 study. Blood. 2024;144(18). doi:10.1182/BLOOD.2024024631 DOI: https://doi.org/10.1182/blood.2024024631
Wierda WG, Allan JN, Siddiqi T, et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results From the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J Clin Oncol. 2021;39(34):3853-3865. doi:10.1200/JCO.21.00807 DOI: https://doi.org/10.1200/JCO.21.00807
Niemann CU, Munir T, Moreno C, et al. Fixed-duration ibrutinib-venetoclax versus chlorambucil-obinutuzumab in previously untreated chronic lymphocytic leukaemia (GLOW): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023;24(12):1423-1433. doi:10.1016/S1470-2045(23)00452-7 DOI: https://doi.org/10.1016/S1470-2045(23)00452-7
Brown JR, Seymour JF, Jurczak W, et al. Fixed-Duration Acalabrutinib Combinations in Untreated Chronic Lymphocytic Leukemia. N Engl J Med. 2025;392(8):748-762. doi:10.1056/NEJMOA2409804/SUPPL_FILE/NEJMOA2409804_DATA-SHARING.PDF
Eyre TA, Hess LM, Sugihara T, et al. Clinical outcomes among patients with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) who received treatment with a covalent BTK and BCL2 inhibitor in the United States: a real-world database study. Leuk Lymphoma. 2023;64(5):1005-1016. doi:10.1080/10428194.2023.2190436 DOI: https://doi.org/10.1080/10428194.2023.2190436
Eyre TA, Thompson P, Wierda WG, et al. BRUIN CLL-322: A phase 3 open-label, randomized study of fixed duration pirtobrutinib plus venetoclax and rituximab versus venetoclax and rituximab in previously treated chronic lymphocytic leukemia/small lymphocytic lymphoma. J Clin Oncol. 2023;41(16_suppl):TPS7583-TPS7583. doi:10.1200/JCO.2023.41.16_SUPPL.TPS7583 DOI: https://doi.org/10.1200/JCO.2023.41.16_suppl.TPS7583
Woyach JA, Wierda WG, Coombs CC, et al. BRUIN CLL-314: A Phase III Open-Label, Randomized Study of Pirtobrutinib (LOXO-305) Versus Ibrutinib in Patients with Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Blood. 2022;140(Supplement 1):12427-12428. doi:10.1182/BLOOD-2022-157589 DOI: https://doi.org/10.1182/blood-2022-157589
Blombery P, Thompson ER, Lew TE, et al. Enrichment of BTK Leu528Trp mutations in patients with CLL on zanubrutinib: potential for pirtobrutinib cross-resistance. Blood Adv. 2022;6(20):5589-5592. doi:10.1182/bloodadvances.2022008325 DOI: https://doi.org/10.1182/bloodadvances.2022008325
Omer Z, Yano M, Rai J, et al. Clinical characteristics and outcome in a cohort of CLL patients with BTK T474 gatekeeper mutation. Blood 2024; 144 (Supplement 1): 1875. doi: 10.1182/blood-2024-209336 DOI: https://doi.org/10.1182/blood-2024-209336
Dreyling M. High-Risk Subgroups and MRD: An Updated Analysis of the Phase 3 ECHO Trial of Acalabrutinib with Bendamustine/Rituximab in Previously Untreated Mantle Cell Lymphoma. Published online December 7, 2024. DOI: https://doi.org/10.1182/blood-2024-200290
Wang M, Munoz J, Goy A, et al. Three-Year Follow-Up of KTE-X19 in Patients With Relapsed/Refractory Mantle Cell Lymphoma, Including High-Risk Subgroups, in the ZUMA-2 Study. J Clin Oncol. 2023;41(3). doi:10.1200/JCO.21.02370 DOI: https://doi.org/10.1200/JCO.21.02370
FDA grants accelerated approval to pirtobrutinib for relapsed or refractory mantle cell lymphoma | FDA. Accessed March 28, 2025. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pirtobrutinib-relapsed-or-refractory-mantle-cell-lymphoma
Jaypirca | European Medicines Agency (EMA). Accessed March 30, 2025. https://www.ema.europa.eu/en/medicines/human/EPAR/jaypirca
Eyre TA, Shah NN, Dreyling M, et al. BRUIN MCL-321: Phase III Study of Pirtobrutinib Versus Investigator Choice of BTK Inhibitor in BTK Inhibitor Naive Mantle Cell Lymphoma. Futur Oncol. 2022;18(36):3961-3969. doi:10.2217/FON-2022-0976 DOI: https://doi.org/10.2217/fon-2022-0976
Danilov A, Tees MT, Patel K, et al. A First-in-Human Phase 1 Trial of NX-2127, a First-in-Class Bruton’s Tyrosine Kinase (BTK) Dual-Targeted Protein Degrader with Immunomodulatory Activity, in Patients with Relapsed/Refractory B Cell Malignancies. Blood. 2023;142(Supplement 1):4463-4463. doi:10.1182/BLOOD-2023-179872 DOI: https://doi.org/10.1182/blood-2023-179872
Thompson MC, Parrondo RD, Frustaci AM, et al. Preliminary Efficacy and Safety of the Bruton Tyrosine Kinase Degrader BGB-16673 in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: Results from the Phase 1 CaDAnCe-101 Study. Blood. 2024;144(Supplement 1):885-885. doi:10.1182/BLOOD-2024-199116 DOI: https://doi.org/10.1182/blood-2024-199116
Siddiqi T, Maloney DG, Kenderian SS, et al. Lisocabtagene maraleucel in chronic lymphocytic leukaemia and small lymphocytic lymphoma (TRANSCEND CLL 004): a multicentre, open-label, single-arm, phase 1-2 study. Lancet (London, England). 2023;402(10402):641-654. doi:10.1016/S0140-6736(23)01052-8 DOI: https://doi.org/10.1016/S0140-6736(23)01052-8
Blachly JS, Stephens DM, Ye JC, et al. Initial Results from a Phase 1/2 Dose Escalation and Expansion Study Evaluating MS-553, a Novel and Selective PKCβ Inhibitor, in Patients with CLL/SLL. Blood. 2022;140(Supplement 1):2324-2325. doi:10.1182/BLOOD-2022-171203 DOI: https://doi.org/10.1182/blood-2022-171203
Danilov A, Fakhri B, Awan FT, et al. Epcoritamab Monotherapy in Patients (Pts) with Relapsed or Refractory (R/R) Chronic Lymphocytic Leukemia (CLL): Results from CLL Expansion and Optimization Cohorts of Epcore CLL-1. Blood. 2024;144(Supplement 1):883-883. doi:10.1182/BLOOD-2024-199708 DOI: https://doi.org/10.1182/blood-2024-199708
BTK Inhibitor - View Our Pirtobrutinib (LOXO-305) MOA Video | Lilly Oncology. Accessed March 30, 2025. https://www.lillyoncologypipeline.com/molecule/btk-inhibitor
Lewis KL, Cheah CY. Non-Covalent BTK Inhibitors-The New BTKids on the Block for B-Cell Malignancies. J Pers Med. 2021;11(8). doi:10.3390/JPM11080764 DOI: https://doi.org/10.3390/jpm11080764
Estupiñán HY, Berglöf A, Zain R, Smith CIE. Comparative Analysis of BTK Inhibitors and Mechanisms Underlying Adverse Effects. Front Cell Dev Biol. 2021;9:630942. Published 2021 Mar 11. doi:10.3389/fcell.2021.630942 DOI: https://doi.org/10.3389/fcell.2021.630942
Mato AR, Shah NN, Jurczak W, et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study. Lancet. 2021;397(10277):892-901. doi:10.1016/S0140-6736(21)00224-5 DOI: https://doi.org/10.1016/S0140-6736(21)00224-5
Brandhuber B, Gomez E, Smith S, et al. LOXO-305, a next generation reversible btk inhibitor, for overcoming acquired resistance to irreversible BTK inhibitors. Clinical Lymphoma, Myeloma and Leukemia. 2018;18:S216. doi:10.1016/j.clml.2018.07.081 DOI: https://doi.org/10.1016/j.clml.2018.07.081
Alsadhan A, Cheung J, Gulrajani M, et al. Pharmacodynamic Analysis of BTK Inhibition in Patients with Chronic Lymphocytic Leukemia Treated with Acalabrutinib. Clin Cancer Res. 2020;26(12):2800-2809. doi:10.1158/1078-0432.CCR-19-350 DOI: https://doi.org/10.1158/1078-0432.CCR-19-3505
Gomez EB, Ebata K, Randeria HS, et al. Preclinical characterization of pirtobrutinib, a highly selective, noncovalent (reversible) BTK inhibitor. Blood. 2023;142(1):62-72. doi:10.1182/blood.2022018674 DOI: https://doi.org/10.1182/blood.2022018674
Gomez EB, Lippincott I, Rosendahal MS, Rothenberg M, Andrews SW, Branhuber BJ. Loxo-305, a highly selective and non-covalent next generation BTK inhitior, inhibits diverse BTK C481 substitution mutations. Blood. 2019;134(suppl 1):4644. doi: 10.1182/blood-2019-126114 DOI: https://doi.org/10.1182/blood-2019-126114

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Canadian Hematology Today

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.