Therapy for Myelodysplastic Syndromes Beyond the Front Line in 2024 in Canada
DOI:
https://doi.org/10.58931/cht.2024.3252Abstract
Management of anemia and/or transfusion dependence (TD) after failure of erythropoietic-stimulating agents (ESA) and therapeutic options after hypomethylating agent (HMA) failures remain the biggest challenges for physicians treating lower and higher-risk myelodysplastic syndromes (MDS), respectively. Fortunately, new therapies are available (or soon to be approved), and innovations in prognostic refinement using next-generation sequencing may also facilitate more precision medicine. This review highlights commercially available (or soon to be) options for the amelioration of anemia and transfusion dependence when ESA’s fail and the management of higher-risk MDS when hypomethylating agents fail or cease working. While not all of these agents are currently funded or approved in Canada, some are available for off-label access or purchase.
References
Park S, Grabar S, Kelaidi C, et al. Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience. Blood. Jan 15 2008;111(2):574-82.
Park S, Hamel JF, Toma A, et al. Outcome of Lower-Risk Patients With Myelodysplastic Syndromes Without 5q Deletion After Failure of Erythropoiesis-Stimulating Agents. J Clin Oncol. May 10 2017;35(14):1591-1597. doi:10.1200/JCO.2016.71.3271
Caballero JC, Dávila J, López-Pavía M, et al. Outcomes and effect of somatic mutations after erythropoiesis stimulating agents in patients with lower-risk myelodysplastic syndromes. Therapeutic Advances in Hematology. 2024;15:20406207231218157. doi:10.1177/20406207231218157
Fenaux P, Giagounidis A, Selleslag D, et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. Blood. Oct 6 2011;118(14):3765-76. doi:10.1182/blood-2011-01-330126
Santini V, Giagounidis A, Pelligra CG, et al. Impact of Lenalidomide Treatment on Overall Survival in Patients With Lower-Risk, Transfusion-Dependent Myelodysplastic Syndromes. Clin Lymphoma Myeloma Leuk. Sep 2022;22(9):e874-e883. doi:10.1016/j.clml.2022.05.001
Prebet T, Cluzeau T, Park S, et al. Outcome of patients treated for myelodysplastic syndromes with 5q deletion after failure of lenalidomide therapy. Oncotarget. Oct 10 2017;8(47):81926-81935. doi:10.18632/oncotarget.18477
López Cadenas F, Lumbreras E, González T, et al. Evaluation of Lenalidomide (LEN) Vs Placebo in Non-Transfusion Dependent Low Risk Del(5q) MDS Patients. Final Results of Sintra-REV Phase III International Multicenter Clinical Trial. Blood. 2022;140(Supplement 1):1109-1111. doi:10.1182/blood-2022-168718
Jädersten M, Saft L, Smith A, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. May 20 2011;29(15):1971-9. doi:10.1200/jco.2010.31.8576
Santini V, Almeida A, Giagounidis A, et al. Randomized Phase III Study of Lenalidomide Versus Placebo in RBC Transfusion-Dependent Patients With Lower-Risk Non-del(5q) Myelodysplastic Syndromes and Ineligible for or Refractory to Erythropoiesis-Stimulating Agents. J Clin Oncol. 09 01 2016;34(25):2988-96. doi:10.1200/JCO.2015.66.0118
Santini V, Almeida A, Giagounidis A, et al. The Effect of Lenalidomide on Health-Related Quality of Life in Patients With Lower-Risk Non-del(5q) Myelodysplastic Syndromes: Results From the MDS-005 Study. Clin Lymphoma Myeloma Leuk. Feb 2018;18(2):136-144.e7. doi:10.1016/j.clml.2017.12.004
Santini V, Fenaux P, Giagounidis A, et al. Impact of somatic mutations on response to lenalidomide in lower-risk non-del(5q) myelodysplastic syndromes patients. Leukemia. Mar 2021;35(3):897-900. doi:10.1038/s41375-020-0961-3
Hellström-Lindberg E. Efficacy of erythropoietin in the myelodysplastic syndromes: a meta-analysis of 205 patients from 17 studies. Br J Haematol. Jan 1995;89(1):67-71. doi:10.1111/j.1365-2141.1995.tb08909.x
Suragani RN, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. Apr 2014;20(4):408-14. doi:10.1038/nm.3512
Platzbecker U, Götze KS, Kiewe P, et al. Long-Term Efficacy and Safety of Luspatercept for Anemia Treatment in Patients With Lower-Risk Myelodysplastic Syndromes: The Phase II PACE-MDS Study. J Clin Oncol. Aug 23 2022:JCO2102476. doi:10.1200/JCO.21.02476
Fenaux P, Platzbecker U, Mufti GJ, et al. Luspatercept in Patients with Lower-Risk Myelodysplastic Syndromes. N Engl J Med. 01 09 2020;382(2):140-151. doi:10.1056/NEJMoa1908892
Komrokji RS, Aguirre LE, Al Ali N, et al. Synergistic Activity of Luspatercept and Erythroid Stimulating Agents Combination for Treatment of Anemia in Lower-Risk Myelodysplastic Syndromes. Blood. 2022;140(Supplement 1):6917-6919. doi:10.1182/blood-2022-169560
Wang X, Hu CS, Petersen B, et al. Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells. Blood Adv. Sep 25 2018;2(18):2378-2388. doi:10.1182/bloodadvances.2018022012
Asai A, Oshima Y, Yamamoto Y, et al. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res. Jul 15 2003;63(14):3931-9.
Platzbecker U, Santini V, Fenaux P, et al. Imetelstat in patients with lower-risk myelodysplastic syndromes who have relapsed or are refractory to erythropoiesis-stimulating agents (IMerge): a multinational, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. Jan 20 2024;403(10423):249-260. doi:10.1016/S0140-6736(23)01724-5
Garcia-Manero G, McCloskey JK, Griffiths EA, et al. Oral Decitabine/Cedazuridine in Patients with Lower Risk Myelodysplastic Syndrome: A Longer-Term Follow-up of from the Ascertain Study. Blood. 2021;138(Supplement 1):66-66. doi:10.1182/blood-2021-144648
Jabbour E, Short NJ, Montalban-Bravo G, et al. Randomized phase 2 study of low-dose decitabine vs low-dose azacitidine in lower-risk MDS and MDS/MPN. Blood. 09 28 2017;130(13):1514-1522. doi:10.1182/blood-2017-06-788497
Jabbour EJ, Garcia-Manero G, Strati P, et al. Outcome of patients with low-risk and intermediate-1-risk myelodysplastic syndrome after hypomethylating agent failure: a report on behalf of the MDS Clinical Research Consortium. Cancer. Mar 15 2015;121(6):876-82. doi:10.1002/cncr.29145
Adès L, Girshova L, Doronin VA, et al. Pevonedistat plus azacitidine vs azacitidine alone in higher-risk MDS/chronic myelomonocytic leukemia or low-blast-percentage AML. Blood Adv. Sep 13 2022;6(17):5132-5145. doi:10.1182/bloodadvances.2022007334
Prébet T, Gore SD, Esterni B, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. Aug 20 2011;29(24):3322-7. doi:10.1200/JCO.2011.35.8135
Jabbour E, Garcia-Manero G, Batty N, et al. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer. Aug 15 2010;116(16):3830-4. doi:10.1002/cncr.25247
Prebet T, Fenaux P, Vey N, Myelodysplasies GFd. Predicting outcome of patients with myelodysplastic syndromes after failure of azacitidine: validation of the North American MDS consortium scoring system. Haematologica. Oct 2016;101(10):e427-e428. doi:10.3324/haematol.2016.150714
Santini V. How I treat MDS after hypomethylating agent failure. Blood. Feb 07 2019;133(6):521-529. doi:10.1182/blood-2018-03-785915
Zeidan AM, Platzbecker U, Bewersdorf JP, et al. Consensus proposal for revised International Working Group 2023 response criteria for higher-risk myelodysplastic syndromes. Blood. Apr 27 2023;141(17):2047-2061. doi:10.1182/blood.2022018604
Ball B, Komrokji RS, Adès L, et al. Evaluation of induction chemotherapies after hypomethylating agent failure in myelodysplastic syndromes and acute myeloid leukemia. Blood Adv. Aug 28 2018;2(16):2063-2071. doi:10.1182/bloodadvances.2018015529
Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J Clin Oncol. Sep 10 2018;36(26):2684-2692. doi:10.1200/JCO.2017.77.6112
Bogenberger JM, Kornblau SM, Pierceall WE, et al. BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia. Aug 2014;28(8):1657-65. doi:10.1038/leu.2014.44
Zeidan AM, Borate U, Pollyea DA, et al. A phase 1b study of venetoclax and azacitidine combination in patients with relapsed or refractory myelodysplastic syndromes. Am J Hematol. Feb 2023;98(2):272-281. doi:10.1002/ajh.26771
Sallman DA, Foran JM, Watts JM, et al. Ivosidenib in patients with IDH1-mutant relapsed/refractory myelodysplastic syndrome (R/R MDS): Updated enrollment and results of a phase 1 dose-escalation and expansion substudy. Journal of Clinical Oncology. 2022;40(16_suppl):7053-7053. doi:10.1200/JCO.2022.40.16_suppl.7053
Sebert M, Cluzeau T, Beyne Rauzy O, et al. Ivosidenib Monotherapy Is Effective in Patients with IDH1 Mutated Myelodysplastic Syndrome (MDS): The Idiome Phase 2 Study By the GFM Group. Blood. 2021;138(Supplement 1):62-62. doi:10.1182/blood-2021-146932
DiNardo CD, Venugopal S, Lachowiez C, et al. Targeted therapy with the mutant IDH2 inhibitor enasidenib for high-risk IDH2-mutant myelodysplastic syndrome. Blood Adv. Jun 13 2023;7(11):2378-2387. doi:10.1182/bloodadvances.2022008378
Vishwasrao P, Li G, Boucher JC, Smith DL, Hui SK. Emerging CAR T Cell Strategies for the Treatment of AML. Cancers (Basel). Feb 27 2022;14(5)doi:10.3390/cancers14051241
Chua CC, Cheok KPL. Taking a step forward in CAR T-cell therapy for acute myeloid leukaemia and myelodysplastic syndrome. Lancet Haematol. Mar 2023;10(3):e161-e162. doi:10.1016/S2352-3026(23)00002-9
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Canadian Hematology Today
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.